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a b s t r a c t

The gravity-driven motion of a droplet impacting on a liquid–liquid interface is studied.
The full Navier–Stokes equations are solved on a fixed, uniform grid using a finite differ-
ence/front-capturing method. For the representation of fluid–fluid interfaces, a coupled
Level-Set/Volume-Of-Fluid method [M. Sussman, E.G. Puckett, A coupled Level-Set and Vol-
ume-of-Fluid method for computing 3D and axisymmetric incompressible two-phase
flows, J. Comp. Phys. 162 (2000) 301–337] is used, in which we introduce the novel
approach of describing separate interfaces with different marker functions. As a conse-
quence, we prevent numerical coalescence of the droplet and the liquid–liquid interface
without excessive (local) grid refinement. To validate our method, numerical simulations
of the drop impact event are compared with experiments [Z. Mohamed-Kassim, E.K. Long-
mire, Drop impact on a liquid–liquid interface, Phys. Fluids 15 (2003) 3263–3273]. Further-
more, a comparison is made with the numerical results of [A. Esmaeeli, G. Tryggvason,
Direct numerical simulations of bubbly flows. Part 2. Moderate Reynolds number arrays,
J. Fluid Mech. 385 (1999) 325–358] for an array of rising bubbles. The investigation shows
that the multiple marker approach successfully prevents numerical coalescence of inter-
faces and adequately captures the effect of surface tension.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

For the direct numerical solution of multiple droplets in a viscous fluid, some of the most commonly used methods either
belong to the class of front-capturing or front-tracking methods. Using either one of these methods to simulate droplet inter-
action, one is confronted with the wide range of length scales involved.

When two droplets collide, a thin film of the surrounding liquid persists between the droplets, requiring a certain drain-
age time before coalescence may take place. Depending on the size of the droplets and the material properties of the fluids,
the thickness of the thin film can be much smaller than the radius of the droplet (Fig. 1). In a numerical simulation, repre-
sentation of such thin films requires extensive grid refinement, which is exceptionally expensive when the fluid motion is
computed on a fixed, uniform grid. Although local adaptivity of the mesh refinement can be considered in anticipation of
the random motion of droplets in a dispersion, its implementation substantially contributes to the complexity of the algo-
rithm. Alternatively, if the thin film is not resolved in a numerical simulation, front-tracking and front-capturing methods
may give qualitatively very different results because of different interface representations.

In front-capturing methods, the moving, deformable interface is defined implicitly by a marker function on the fixed grid.
As a result, standard front-capturing methods, such as Level-Set (LS) [23,2], Volume-Of-Fluid (VOF) [18,14,11] or combined
. All rights reserved.
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Fig. 1. Collision of two oil drops rising in a glucose–water mixture at low Reynolds and low Weber number conditions [4].
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LS/VOF methods [22,25] are not capable of representing multiple interfaces in a single computational stencil. When the
interfaces of different droplets collide, they merge automatically, resulting in so-called numerical coalescence of the
droplets.

In case of front-tracking, the interface is defined explicitly by means of a set of logically connected particles [24]. Conse-
quently, multiple interfaces can easily be represented in a single cell and droplet collision without coalescence is naturally
simulated. To merge interfaces, special effort needs to be made. In the region of merging, some interface particles are deleted
while the remaining ones need to be reconnected.

In conclusion, although front-tracking enables simulation of interfaces both with and without coalescence, standard
front-capturing methods are limited to automatic merging of interfaces upon collision. Therefore, front-capturing methods
have been combined with particle tracking in recent years. Combined particle/VOF [1,13] and particle/LS [5] methods have
been proposed to capture interfaces at sub-cell resolution, however at the cost of introducing additional complexity com-
pared to the original VOF or LS methods.

In this work, we propose a different strategy to simulate non-coalescing interfaces with a front-capturing method. The
concept is to use separate marker functions for the interfaces of different volumes of the same fluid. It will be shown that
only small adjustments to the traditional, single marker front-capturing method are required, adding little complexity to
the algorithm.

For the validation of the multiple marker front-capturing method we study two cases. First, it is applied to the problem of
the gravity driven impact of a droplet on a liquid–liquid interface. Essentially, this problem is equivalent to the problem of
the collision of two droplets, one of finite and one of infinite radius. Our results are compared with the detailed experimental
study of drop impact on a liquid–liquid interface by Mohamed-Kassim and Longmire [16]. Second, it is applied to the buoy-
ant rise of an array of bubbles as has been studied before by [6].

The organization of the paper is as following: In Section 2, we present the governing equations for interfacial two-phase
flow. Subsequently, our traditional front-capturing method is discussed, which is based on a definition of different bodies of
the same fluid with a single marker function. Then, in Section 4 the concept and implementation of the multiple marker ap-
proach is introduced. Subsequently in Section 5 the drop impact study is presented. Here, following a motivation of the
numerical set-up, a detailed comparison between numerical results and experimental observations is displayed. In Section
6 the buoyant rise of an array of bubbles is discussed. In Section 7, we conclude with a discussion of the possibilities and
limitations for future application of the multiple marker method in the simulation of liquid–liquid dispersions.

2. Governing equations for interfacial two-phase flow

Following the front-tracking/front-capturing methodology, two-phase flow is described by a set of equations for fluid and
interface motion.

The motion of the fluids is described by the incompressible Navier–Stokes equations:
r � u ¼ 0; ð1Þ
qðut þr � ðuuÞÞ ¼ �rpþr � ðlðruþruTÞÞ þ qg; ð2Þ
where p;u ¼ ðu;v ;wÞT and g, respectively, denote pressure, the velocity vector and the gravitational acceleration. Subscript
‘t’ denotes differentiation with respect to time. Density q and viscosity l are denoted by q1;l1 in fluid phase ‘1’ and by q2;l2

in fluid phase ‘2’, see Fig. 2. At the interface between the fluids, the following conditions apply for continuity of velocity and
stresses:
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Fig. 2. Continuous fluid phase ‘1’ and dispersed fluid phase ‘2’ with corresponding densities q1;q2 and viscosities l1;l2. Surface tension acts as a force in
the direction of the normal vector n at interface C and its magnitude is proportional to the surface tension coefficient r and the local curvature j.
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½u�C ¼ 0; ð3Þ
pnþ lðruþruTÞ � n
� �

C ¼ rjn; ð4Þ
where ½��C denotes a jump across the interface C, n denotes the interface normal vector, j represents the value of the inter-
face curvature, and r is the surface tension coefficient, assumed to be constant.

The interface C between the two fluids is represented by the zero level of a marker function, denoted by /, i.e.
CðtÞ ¼ fx j/ðx; tÞ ¼ 0g. Away from the interface /, the so-called Level-Set (LS) function, is required to be a distance function
to the interface such that / < 0 in phase ‘1’ and / > 0 in phase ‘2’. Consequently, the density and viscosity in 2, 4 are given
by:
q ¼ q1ð1� Hð/ÞÞ þ q2Hð/Þ; ð5Þ
l ¼ l1ð1� Hð/ÞÞ þ l2Hð/Þ; ð6Þ
where the Heaviside function Hð/Þ is defined as follows:
Hð/Þ ¼
1 if / > 0
0 otherwise:

�
ð7Þ
Since the fluids are considered immiscible, the interface is a material property of the flow and its motion is described by:
/t þ u � r/ ¼ 0: ð8Þ
3. Computational approach: single marker front-capturing method

The equations are solved numerically on a fixed, uniform Cartesian grid in a three-dimensional rectangular computational
domain. Each time step the equations for the fluid velocity and interface position are integrated sequentially: the fluid veloc-
ity is advanced for given interface position and the interface is advanced given the updated flow field. The interface is ad-
vected using the Coupled Level-Set/Volume-Of-Fluid (CLSVOF) method [22]. The Navier–Stokes equations are integrated
in time with a pressure correction method. To facilitate numerical treatment of the interface conditions, the discontinuous
variation of viscosity at the interface is smoothed. The remaining jump conditions for the pressure and the discontinuous
density are incorporated in the discretization of the Navier–Stokes equations by means of the ghost-fluid method [12].

In the following, we give a short description of the temporal and spatial discretization of the Navier–Stokes solver and the
CLSVOF interface advection algorithm in case all interfaces are represented by a single marker function. The extension to a
multiple marker front-capturing method is discussed in Section 4.

3.1. Temporal discretization of the Navier–Stokes equations

The Navier–Stokes equations are integrated in time using a pressure correction method [26]. Eq. (2) is split into the fol-
lowing predictor and corrector step:
u� � un

Dt
¼ �3

2
AðunÞ þ 1

2
Aðun�1Þ þ 1

q
Dimpðu�Þ þ DexpðunÞ � Gpn�1

2

� �
þ g; ð9Þ
and
unþ1 � u�

Dt
¼ �Gp�

q
; ð10Þ
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where
p� ¼ pnþ1
2 � pn�1

2: ð11Þ
In (9), G represents the discrete gradient and A the discrete convective operator. The convective term is integrated explicitly
using the second-order Adams–Bashforth method. The diffusive term is split into two parts, Dimp and Dexp which are respec-
tively integrated in time using the implicit and explicit Euler method. By taking the divergence of (10) and requiring the
incompressibility condition for the velocity at the new time level:
DIVðunþ1Þ ¼ 0; ð12Þ
we obtain a discrete Poisson equation for p�:
DIV
1

qnþ1
2

Gp�
 !

¼ 1
Dt

DIVðu�Þ; ð13Þ
where DIV denotes the discrete divergence operator. Eq. (13) is solved for p� with the ICCG solver, after which u� is corrected
toward unþ1 according to (10). Finally, the pressure is updated according to (11).

In (9), the material parameters are always derived from the interface position at tnþ1
2:
l ¼ lð/nþ1
2Þ; q ¼ qð/nþ1

2Þ; ð14Þ
where lð/Þ and qð/Þ are defined by (5) and (6). Note that in (9), the pressure gradient is evaluated at tn�1
2 and incorporation

of jump conditions requires the interface representation at tn�1
2. To include the correct jump conditions in the discretization

of the Poisson problem for p� (13), the interface representation at both tnþ1
2 and tn�1

2 is required. This is due to the definition of
p� as the difference between pnþ1

2 and pn�1
2 in (11).

The time step is determined from an adaptive criterion based on restrictions due to convection, surface tension an gravity,
following [10,22].

3.2. Spatial discretization

The equations are spatially discretized on a fixed Cartesian grid using finite differences. A standard staggered arrange-
ment of variables is used [8], i.e. vector components at the cell faces and scalars in the cell center. Following [23,2], the vis-
cosity is regularized by replacing the Heaviside function Hð/Þ in (7) with a continuous representation, denoted Hað/Þ:
Hað/Þ ¼
0 if / < �a;
1
2 1þ /

a þ 1
p sin p/

a

� �� �
if j/j 6 a;

1 if / > a;

8><
>: ð15Þ
where we choose a ¼ 3=2h;h being the uniform mesh width.
[10] show that when the viscosity is regularized, the gradients of the velocity are also continuous at the interface and

condition (4) reduces to:
½p� ¼ rj: ð16Þ
As a result, no jump conditions for the velocity remain and straightforward central second-order finite differences are used to
approximate derivatives of the velocity, anywhere in the computational domain.

The interface condition (16) represents an explicit jump condition for the pressure which is implemented in the discret-
ization of the pressure gradient with the ghost-fluid method [12].

In contrast to viscosity, the density is not regularized. While the density is defined at cell centers, discretization of (13)
requires values of 1

q at cell faces. Following [12], the weighted harmonic average is used to obtain values of 1
q at a cell face in

the vicinity of the interface.

3.3. CLSVOF interface advection

The LS interface representation described in Section 2 provides all information required for the implementation of inter-
face conditions, e.g. by means of the ghost-fluid method: the discrete LS function implicitly defines the position of the inter-
face on the computational grid. However, numerical methods for the advection equation of the LS function (8) do not
conserve the volume of each fluid phase, which adversely affects the quality of long time simulations of incompressible fluid
flow. On the other hand, interface advection with the Volume-Of-Fluid (VOF) method can be performed such that the volume
of each phase is conserved [19]. In the VOF method, fluid phases are represented by the discrete volume fraction or Volume-
Of-Fluid (VOF) function. The discrete VOF function, denoted by w, can be defined in terms of the LS function by:
wi;j;kðtÞ ¼
1

DxDyDz

Z
Xi;j;k

Hð/ðx; tÞÞdx; ð17Þ
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Fig. 3. Average (left) and maximum (right) relative error for the curvature of a sphere. Curvatures evaluated from the exact LS function (deltas), the
reconstructed LS function (CLSVOF method) (squares) and the exact VOF function with the height-function methodology (circles).
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where Xi;j;k denotes the volume of a computational cell. Consequently, if all fluid in cell ði; j; kÞ belongs to fluid phase ‘1’,
wi;j;k ¼ 0. If all fluid belongs to phase ‘2’, wi;j;k ¼ 1. If the cell contains both fluid phase ‘1’ and ‘2’, 0 < wi;j;k < 1.

The LS and VOF approaches have been combined in the CLSVOF interface advection method [22,21]. By applying the
CLSVOF method in this work, we benefit from both interface representations: the LS function is used for implementation
of the interface conditions and the VOF function is used to ensure volume conservation of the interface advection.

Another approach to combine LS with VOF to obtain volume conservation is the MCLS interface advection method by [25].
The algorithm of the MCLS method is less elaborate than that of the CLSVOF method. However, we found the CLSVOF method
more accurate for advection tests such as the slotted disk by [27] and the single reversed vortex test by [17]. Therefore the
CLSVOF method is used in this work.

In the CLSVOF method, interface advection is governed by the following conservation equations for the LS and VOF func-
tions, respectively1:
1 Not
/t þr � ðu/Þ ¼ 0 and wt þr � ðuwÞ ¼ 0: ð18Þ
To ensure a volume conserving advancement of the fluid phases with corresponding interface position, the coupled LS and
VOF advection procedure consists of the following two steps:

1. Given un;wn�1
2 and /n�1

2, Eq. (18) are solved using a second-order accurate conservative operator split advection scheme to
obtain wnþ1

2 and /nþ1
2. To ensure the volume conserving advection of the volume fraction function, the discrete fluxes of w

are determined from a geometric reconstruction of the fluid phases in each cell. Assuming a piecewise linear interface in
cells where 0 < w < 1, the co-advected LS function is used to obtain the normal vector of the reconstructed interface.

2. The advection procedure for the LS function yields an interface representation which does not conserve the volume of
each fluid phase. Therefore, the advected LS function /nþ1

2 is reinitialized to represent a distance function to the advected
VOF function wnþ1

2, which does represent a volume conserving distribution of the fluid phases.The LS reinitialization is
achieved by first reconstructing a piecewise linear interface in each cell for which 0 < wnþ1

2 < 1. The normal vector to
the piecewise linear interface segments is obtained from the advected LS function, /nþ1

2. The intercept of the linear seg-
ment in the cell is obtained from the value of the advected VOF function, wnþ1

2. Finally, in each cell over a width of at least
four cells at either side of the interface the LS is assigned to be the signed distance function to the reconstructed piecewise
linear interface.

The advection algorithm for the time integration of Eq. (18) was implemented following [22]. The LS reinitialization algo-
rithm was provided by Dr. Sussman, for which we express our gratitude.

3.4. Interface curvature

In the CLSVOF method, both the LS and VOF interface representations are available for the estimation of interface curva-
ture. In principle, the curvature is most easily computed from the LS function:
j ¼ r � n ¼ r � r/
jr/j : ð19Þ
e that the LS equation in (18) is equivalent to (8) since r � u ¼ 0.
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However, in the CLSVOF method the LS function is reinitialized each timestep as a distance function to piecewise linear inter-
face segments which are reconstructed from the volume fractions. Therefore, the reconstructed LS function itself is contin-
uous but not smooth. The curvature evaluated from the reconstructed LS function with (19) does not converge with grid
refinement. This is shown in the grid convergence study of Fig. 3, which compares curvature errors evaluated with (19) using
the exact LS function and the reconstructed LS function for the case of a spherical interface.

Fortunately, the interface curvature can also be determined with second order accuracy from the volume fractions using
the height-function methodology [9,21,14,7]. In the remainder of the paper we will base the surface tension calculation on
this approach.

4. Extension to the multiple marker front-capturing method

To simulate multiple domains of the same fluid without automatic (numerical) coalescence, we extend the single marker
front-capturing method to deal with multiple marker functions for separate interfaces. I.e. we still simulate two-phase flow,
however using multiple LS functions to represent separate volumes of the same fluid.

Simulating L volumes of fluid phase ‘2’, we introduce the same number of LS functions, /1; . . . ;/L, such that each volume l
has a boundary defined by ClðtÞ ¼ fxj/lðx; tÞ ¼ 0g and an interior domain XlðtÞ ¼ fxj/lðx; tÞ > 0g (Fig. 4). In the CLSVOF meth-
od both LS and VOF functions are used to represent fluid phases. For volume l of fluid phase ‘2’, which is represented by LS
function /l, we define a corresponding VOF function, denoted by wl:
Fig. 4.
X1 ¼ fx

Fig. 5.
pressur
wl
i;j;kðtÞ ¼

1
DxDyDz

Z
Xi;j;k

Hð/lðx; tÞÞdx; ð20Þ
To calculate material properties, a common LS function to all interfaces, denoted by /c , is determined:
/cðx; tÞ ¼max /1ðx; tÞ; . . . ;/Lðx; tÞ
� �

: ð21Þ
giving q ¼ qð/cÞ and l ¼ lð/cÞ in (5) and (6).
In Section 3.2 we mentioned that we use the ghost-fluid method for the surface tension forces. The extension toward mul-

tiple interfaces is straightforward. When two interfaces are present between grid points (Fig. 5), contributions from both
interfaces are taken into account by adding individual jump conditions in the discretization of the pressure gradient, e.g.
at iþ 1

2:
Ω1

2Γ
Ω2

1Γ

Different fluid volumes, X1 and X2, and their boundaries, C1 and C2, which is defined by separate LS functions /1 and /2:
j/1ðxÞ > 0g;C1 ¼ fxj/1ðxÞ ¼ 0g;X2 ¼ fxj/2ðxÞ > 0g and C2 ¼ fxj/2ðxÞ ¼ 0g.

x x xi−1/2 i+1/2 i+3/2

1[p]

[p] 2

p
i−1

p
i

i+1
i+2

p
p

One-dimensional example of the discontinuous pressure distribution in the presence of two nearby interfaces (dashed lines) with corresponding
e jumps ½p�1 and ½p�2.
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@p
@x

	 

iþ1

2

¼ piþ1 � pi � ½p�
1 � ½p�2

Dx
; ð22Þ
where ½p�1 and ½p�2 denote the pressure jumps at interface 1 and 2. A general formulation for the pressure gradient at xiþ1
2

in
case of L interfaces is given by:
@p
@x

	 

iþ1

2

¼ piþ1 � pi �
XL

l¼1

½p�l
 !

=Dx: ð23Þ
Since the pressure jump is equivalent to the effect of surface tension forces at the interface (16), ½p�l is defined as follows:
½p�l ¼
rjl

C if /l
i 6 0 and /l

iþ1 > 0

�rjl
C if /l

i > 0 and /l
iþ1 6 0

0 otherwise:

8><
>: ð24Þ
Here jl
C corresponds to the curvature of interface l, which is evaluated using wl.

Every time step, each interface is advected separately. In other words, /l;n�1
2 and wl;n�1

2 are advanced sequentially toward
/l;nþ1

2 and wl;nþ1
2 using the same velocity field un within the CLSVOF advection algorithm. No explicit condition is imposed to

avoid overlap of interfaces at the end of a time step. In the next section, our results show that overlap of interfaces is very
small and converges with mesh refinement.

5. Gravity-driven drop impact on a liquid–liquid interface

In this section, the multiple marker front-capturing method is applied to the case of gravity/buoyancy-driven impact of a
drop on a liquid–liquid interface. A droplet is considered, settling (under influence of gravity) or rising (due to buoyancy) in a
continuous liquid until it approaches the quiescent interface between the continuous liquid and another layer of the droplet
fluid.

Fig. 6 shows images of buoyancy-driven drop impact from the study by [4]. Upon impact, the droplet deforms the inter-
face (Fig. 6(a)). The interface is deformed until the capillary pressure exerted by the deformed interface is sufficiently large to
rebound the droplet (Fig. 6(b)). Meanwhile, a thin film of the continuous liquid prevents coalescence of the droplet with the
secondary layer of droplet fluid. Depending on conditions, the droplet oscillates one or more times during rebound Fig. 6(c))
until it eventually settles to a quasi steady state (Fig. 6(d)). This ‘rest position’ is maintained for a significantly longer time than
the time required for the dynamic rebound behavior, until the thin film of the continuous liquid is sufficiently drained,
break-up of the film occurs and coalescence of the droplet with the second layer takes place.

Mohamed-Kassim and Longmire [16] have observed similar behavior for the gravity-driven impact of a drop on a liquid–
liquid interface. In fact, they find that for a wide range of conditions ð0:3 < Re < 300; 0:005 < We < 8:4Þ, film drainage time
is significantly longer than the time for which the dynamic behavior of the droplet takes place. This implies that gravity-dri-
ven drop impact is a relevant problem to study the dynamics of droplet collision and rebound without film rupture. Note that
drop impact on a planar liquid–liquid interface corresponds to the collision of two drops, respectively of finite and infinite
radius.

Additional previous work concerning the gravity or buoyancy-driven impact of a drop on a liquid–liquid interface include
the investigations by [3,20,15]. The numerical studies by [3,20] predominantly focus on characterization of drainage regimes
for the thin film between the droplet and the interface, respectively for low and moderate Reynolds number conditions. In
the work by [15], a combined numerical and experimental study is performed, studying the motion of bubbles, drops and
spheres through liquid–liquid interfaces at low Reynolds number conditions. [28] recently introduced an adaptive finite ele-
ment/Level-Set method to study break-up and coalescence of drops liquid flow. Here, two-dimensional simulations of grav-
ity-driven drop impact are performed at low and moderate Reynolds number conditions.

The current investigation directly compares the results of three-dimensional numerical simulations with experimental
results by Mohamed-Kassim and Longmire [16] for gravity-driven drop impact at moderate Reynolds numbers. The primary
objective is validation of the multiple marker approach for the simulation of interface dynamics during collision.
Buoyancy-driven impact of an oil droplet with an oil–water interface [4]. Visualization of the lighter, colored droplet phase is performed with laser
fluorescence.
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In the following, first the experimental study for the validation of numerical results is presented. Second, some essential
information on the numerical set-up and its requirements are discussed. Subsequently, numerical and experimental results
are compared for the droplet trajectory and interface deformation. Finally, the evolution of the flow field is presented and
discussed.

5.1. Experimental set-up and conditions

Simulations with the multiple marker method are performed for two sets of parameters, corresponding to conditions of
the experimental study by Mohamed-Kassim and Longmire [16].

In the experiment a container of 40 cm2 cross-section and 30 cm height is filled with two layers of liquid. The bottom
layer is a mixture of distilled water and glycerin, 13 cm in height, the top layer is silicon oil, 10 cm in height. At the top
of the silicon oil layer an amount of the water/glycerin mixture is injected, creating a droplet with a sphere equivalent diam-
eter of 1.03 cm. Material properties are listed in Table 1. The water/glycerin mixture is dyed to distinguish between the two
liquids. Both liquids are seeded with small particles to enable fluid velocity measurements using Particle Image Velocimetry
(PIV). Therefore, processed images of the drop impact event provide not only droplet motion and deformation but also fluid
velocity data. Two different kinds of silicon oil are used for the phase surrounding the droplet. Consequently, the study by
Mohamed-Kassim and Longmire [16] provides an extensive amount of experimental data to validate our numerical method.
Table 1
Material properties [16].

Case 1 Case 2 Units

Silicon oil Water/glycerin Silicon oil Water/glycerin

q 949 1128 960 1131 kg/m3

l 19 6.3 48 6.7 mPa s
r 29.1 29.5 mN/m

Table 2
Experimental parameters [16].

Case 1 Case 2 Units

wi 13.2 9.8 cm/s
D 1.03 1.03 cm
ti 0.078 0.105 s
Rei 68 20 –
Wei 5.9 3.2 –
Fri 0.91 0.53 –
f 1.189 1.178 –
k 0.332 0.140 –
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Fig. 7. Computational domain with initial configuration of interfaces. Subscripts ‘d’ and ‘s’, respectively, denote material properties of the droplet (water/
glycerin) phase and the phase surrounding the droplet (silicon oil).
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In the following sections, dimensionless variables are presented using the scaling from [16] to facilitate direct comparison
of numerical and experimental results: length is scaled with the sphere equivalent droplet diameter D and time is scaled
with the impact velocity time scale, defined by ti ¼ D=wi. Here, the droplet impact velocity wi is equivalent to the droplet
terminal velocity. The dimensional values of D;wi and ti in the experiment are listed in Table 2, as well as corresponding
Reynolds, Weber and Froude numbers, defined by:
128c oD=
Rei ¼ qswiD=ls; Wei ¼ qsDw2
i =r; Fri ¼ qsw

2
i =DqgD; ð25Þ
where the subscript ‘s’ denotes material properties belonging to the silicon oil phase surrounding the droplet. Note that the
Eötvös number, Eo ¼ DqgD2=r, is almost identical for both cases: For case 1, Eo ¼ 6:4 and for case 2, Eo ¼ 6:0.
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5.2. Numerical set-up

The geometry of the numerical set-up is displayed in Fig. 7. In the initial condition the droplet shape is spherical and all
fluid is at rest. At the boundaries of the computational domain, the no-slip condition is used for the fluid velocity.

In the numerical set-up, the size of the computational domain is significantly smaller than the fluid container in the
experiment by Mohamed-Kassim and Longmire [16]. On the one hand, a larger domain size is preferred for optimal resem-
blance of conditions in the comparison with experimental results. On the other hand, accurate simulation of the impact
event requires adequate numerical resolution in the vicinity of the droplet interface. Important constraints in balancing
these requirements are the restriction of a uniform computational grid in the current method and a restriction on the num-
ber of computational cells because of limited computational resources. To motivate the current domain size and grid reso-
lution, their influence is investigated and the following results are reported:

� The droplet needs a certain approach distance to reach terminal velocity before impact. Simulations have been performed
to investigate the optimal distance in three different domains with heights of 8D;10D and 12D, a cross-section of 5D2 and
a resolution D=h ¼ 16. The height of the bottom liquid layer is maintained at 2:5D in these different cases. The current
choice of 10D (see Fig. 7) is found adequate as it leads to a maximum droplet velocity within 2% compared to the result
obtained at 12D. More importantly, the interface dynamics after impact are indistinguishable, which is not the case when
the total domain size is only 8D.

� To investigate the influence of the grid resolution on the results, simulations are performed for D=h ¼ 16, 24 and 32 in a
domain of dimensions 5D � 5D � 10D. In Fig. 8, time evolution of the droplet velocity is displayed for these resolutions.
Here, the impact time t=ti ¼ 0 is defined by the instant when the lower drop surface crosses the quiescent interface level.
The results show regular convergence and essentially the same behavior during the impact event for all resolutions. How-
ever, additional investigation of the drop deformation reveals that a minimum resolution of D=h ¼ 24 is required to ade-
quately capture the details of the interface dynamics after impact ðt=ti ¼ 0Þ.
Fig. 9. Snapshots of the droplet and liquid–liquid interface surfaces from simulation of case 1.



Table 3
Grid convergence study of overflow error.

D=h Case 1 ðk ¼ 0:33Þ Case 2 ðk ¼ 0:14Þ

maxðw1 þ w2 � 1Þ

16 1:4� 10�1 5:8� 10�2

24 7:6� 10�2 3:6� 10�2

32 2:6� 10�2 1:4� 10�2
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Fig. 10. Time evolution of drop impact for case 1 (k ¼ 0:33), comparing numerical (left) and experimental results (right). Figures display contours of the
interfaces over a mid-section of the domain at t=ti ¼ 0:0, 0.5, 1.8, 3.0, 5.0, 7.0 (–).



Fig. 11. Time evolution of drop impact for case 2 ðk ¼ 0:14Þ, comparing numerical (left) and experimental results (right). Figures display contours of the
interfaces over a mid-section of the domain at t=ti ¼ 0:0, 0.9, 1.4, 2.2, 3.9, 6.0 (–).
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In the following, only results computed on the finest grid ðD=h ¼ 32Þ are presented. For the selected domain size and the
finest resolution the total mesh consists of 8:2 � 106 computational cells (160 � 160 � 320). By distributing the computa-
tional domain over 80 nodes on the SGI38002 at SARA, a single timestep is completed in approximately 55 s. As the total num-
ber of time steps amounted to approximately 15,000, both computations are performed within 10 days. To conclude on the
numerical performance of the code, a maximum variation of mass between fluid phases of 2:5� 10�5 and a maximum discrete
divergence of the fluid velocity of 1:2� 10�8 is reported for the fine grid simulations of both sets of parameters.
2 500 MHz per node.



5.3. Results

In the experimental study by Mohamed-Kassim and Longmire [16], an extensive discussion of the drop impact event is
found. In the following sections, focus is on validation of the numerical approach. Results of the numerical simulations are
compared with figures reproduced from the experimental data by Mohamed-Kassim and Longmire [16].

5.3.1. Drop trajectory and interfacial deformation
In Fig. 9, three-dimensional snapshots of the droplet and liquid–liquid interface are displayed at various time instances

during the simulation of the impact for the parameters of case 1 (Table 1). Although no explicit condition is used to avoid
overlap of separate colliding domains of the same fluid during the advection procedure, the maximum excess of the com-
bined volume fraction in a cell during the simulation, defined by:
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in the experiment. Also for case 2, a slight oscillation of the upper droplet surface between t=ti ¼ 1 and t=ti ¼ 3 is observed in
the simulation, similar to case 1, which is not found in the experiment.

The evolution of the droplet width and height is presented in Fig. 13, confirming the qualitative agreement of the drop
deformation suggested by Figs. 10 and 11. In agreement with the centerline locations of the lower and upper droplet surface
(Fig. 12), whose difference is equivalent to droplet height Dh=D, the largest quantitative difference between the numerical
and experimental droplet width Dw=D is found for case 2.

In conclusion, the results in Figs. 10–13 show that the multiple marker front-capturing method is effective for the sim-
ulation of drop impact without artificial (numerical) coalescence. Good qualitative agreement of the droplet dynamics and
interface deformation is found. In the next section the investigation is extended with fluid velocity data to study the origin of
the observed quantitative differences in detail.

5.3.2. Flow evolution
During the initial stage of impact ðt=ti < 1Þ, the droplet decelerates while fluid is pushed out of the gap between the lower

drop surface and liquid–liquid interface, until only a thin film of the ambient fluid remains. In the experiment, the thin film is
Fig. 14. Normalized vertical velocity contour plots for case 1 ðk ¼ 0:33Þ, comparing numerical (left) and experimental results (right). Figures are displayed at
t=ti ¼ 0:0, 0.9, 1.4, 3.0 (–).
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reported to vary between 0.1 mm and 0.4 mm during the droplet rebound, equal or below the width of the numerical mesh.
Therefore, after the initial stage of the impact, insufficient resolution is available in the simulation to resolve fluid motion in
the thin film between the droplet and the liquid–liquid interface. In the previous section it is noted that especially in case 2,
the initial penetration of the lower droplet surface into the liquid–liquid interface is relatively large compared to the exper-
imental observation (Fig. 12). On the one hand, this could be caused by the higher impact energy in the simulation: Fig. 8
displays that the simulated maximum droplet velocity Reynolds number Rei ¼ 22, while in the experiment Rei ¼ 20. On
the other hand, lack of numerical resolution in the thin film region obviously leads to under-prediction of viscous dissipation
as the gap between the lower drop surface and the interface is smaller than the width of the mesh right after impact time
ðt=ti ¼ 0Þ.

After the initial stage of impact, fluid from the droplet wake continues to impinge on the droplet due to inertia. An
impression of fluid motion in the wake is given in Figs. 14 and 15, presenting contour plots of the normalized vertical veloc-
Fig. 15. Normalized vertical velocity contour plots for case 2 ðk ¼ 0:14Þ, comparing numerical (left) and experimental results (right). Figures are displayed at
t=ti ¼ 0:0, 0.9, 1.4, 2.2 (–).



ity component w=wi over a vertical cross-section of the domain for case 1 and case 2, respectively. As the droplet rebounds
ðt=ti > 1Þ, gradual decrease of downward momentum in the wake is observed, primarily at the upper surface of the droplet
where fluid from the wake area is deflected away from the centerline. The temporal rate of this decrease is obviously higher
for the case in which the viscosity of the fluid surrounding the drop, ls, is larger (case 2). The phenomenon of wake impinge-
ment is well represented in the simulations of case 1 and case 2, both qualitatively and quantitatively in comparison with the
experimental results.

During rebound, the droplet is stretched vertically and oscillates on the liquid–liquid surface due to the effect of surface
tension. In the previous section, good representation of the oscillatory motion of the upper droplet surface (Fig. 12) and the
entire droplet shape (Fig. 13) was found in the simulation of case 1 in comparison with experimental observations. For the
simulation of case 2, the magnitude of the droplet and interface deformation is found to be larger throughout the entire im-
pact event in comparison with the experimental results. The difference between the performance of the numerical method
for both cases may be explained by the role of the thin film between the droplet and the lower liquid layer. Table 1 shows
that for case 2 the viscosity of the fluid in the thin film is 2.5 times larger than in case 1 and that the primary difference
between the two cases concerns the viscosity of the fluid surrounding the droplet.



Fig. 17. Normalized vorticity contour plots for case 1 ðk ¼ 0:33Þ, comparing numerical (left) and experimental results (right). Figures are displayed at
t=ti ¼ 0:0, 0.9, 1.4, 3.0 (–).
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In the simulation, however, lack of spatial resolution results in inadequate performance of the continuum approach for
the discontinuous viscosity in the representation of the boundary conditions.

A detailed account of the fluid motion and the computational resolution in the region of the thin film is provided in
Fig. 16, showing instantaneous vector fields of the fluid velocity at (t=ti ¼ 0:9) for both viscosity ratios.

Note that in case of a viscosity ratio equal to unity, the simulation does not depend on the continuum approach for the
representation of boundary conditions, which explains the better performance of the numerical method for case 1 ðk ¼ 0:33Þ
compared to case 2 ðk ¼ 0:14Þ.

Finally, in Figs. 17 and 18, contour plots of the normalized vorticity xyD=wi are displayed over a vertical cross-section of
the domain, along with contour lines of the droplet and liquid–liquid interface, for case 1 and 2. Here, positive vorticity is
associated with counterclockwise rotation. The vorticity plots provide additional evidence of the proper performance of
the method for the parameters of case 1.

6. Buoyant rise of bubbles at moderate reynolds number

In this section the multiple marker front-capturing method is used to simulate the rise of an array of bubbles in a periodic
domain. In Fig. 19, a snapshot of the bubble array is presented. Previously, such calculations were only performed using the



Fig. 18. Normalized vorticity contour plots for case 2 ðk ¼ 0:14Þ, comparing numerical (left) and experimental results (right). Figures are displayed at
t=ti ¼ 0:0, 0.9, 1.4, 2.2 (–).
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front-tracking methodology. To allow direct comparison with published results, our configuration and parameter set com-
plies with those of Esmaeeli and Tryggvason [6]: The Reynolds number Re ¼ 29:9, the Eötvös number Eo ¼ 2, the density ra-
tio f ¼ 0:1, the viscosity ratio k ¼ 0:1 and the volume fraction a ¼ 0:1256. First, results are shown for the rise of a single
bubble (regular array), subsequently the results of a system of eight bubbles (free array).

In Fig. 20, time evolution of the rise velocity of a single bubble (regular array) is presented for grids containing 243, 483

and 963 computational cells. For these grids, the number of computational cells over the sphere equivalent bubble diameter,
i.e. D=h, respectively amounts 15, 30 and 60. The rise velocity is presented as a Reynolds number, Re ¼ qlwbðtÞD=ll, where
subscripts b and l respectively denote the bubble and the surrounding liquid phase and wbðtÞ is the rise velocity of the bub-
ble. The time scale is made dimensionless using

ffiffiffiffiffiffiffiffiffi
D=g

p
. The results in Fig. 20 show good convergence for the bubble rise

velocity as the difference between the 483 and 963 grid amounts only 0.5%. The estimated converged value of the terminal
Reynolds number is 20.64, which corresponds well with the results by [6]. Time evolution of the bubble relative mass error,
defined by:
P

i;j;kwi;j;kðtÞ �
P

i;j;kwi;j;kðt ¼ 0ÞP
i;j;kwi;j;kðt ¼ 0Þ

�����
�����; ð26Þ



Fig. 19. Buoyant rise of eight droplets in a periodic domain (Re ¼ 29:9; Eo ¼ 2; f ¼ 0:1; k ¼ 0:1 and a ¼ 0:1256). In the cross-sectional plane, one out of four
vectors in each coordinate direction is shown as the computational grid amounts 1283 cells.
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Fig. 20. Time evolution of the Reynolds number of a single bubble in a regular array on three grids: 243 (dotted), 483 (dashed) and 963 (solid).

E. Coyajee, B.J. Boersma / Journal of Computational Physics 228 (2009) 4444–4467 4463
is displayed in Fig. 21. The results show excellent convergence of the relative mass error and a very small mass loss over a
considerable time on any of the grids.

The simulation of the eight bubble system (free array) is performed on a grid of 1283 computational cells, which corre-
sponds to a resolution of approximately 40 computational cells over the sphere equivalent bubble diameter. In the initial
condition, the bubble positions are perturbed slightly compared to a regular cubic array by an off-set equal to 0:04D, how-
ever the initial velocity field is unperturbed ðu ¼ 0Þ. In Fig. 22, time evolution of the rise velocity of the bubbles is presented,
comparing the results of the free array (eight bubbles) with the case of the regular array (single bubble). The rise velocity is
once more presented as a Reynolds number, Re ¼ qlwbðtÞD=ll, however with wbðtÞ the average rise velocity of the bubbles,
defined by:
wbðtÞ ¼
1

Nb

XNb

i¼1

wbi
ðtÞ: ð27Þ
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Fig. 21. Time evolution of the relative mass error of a single bubble in a regular array on three grids: 243 (dotted), 483 (dashed) and 963 (solid).
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Fig. 22. Time evolution of the average Reynolds number of rising buoyant bubbles, comparing results of the free array (eight bubbles, solid) with the regular
array (single bubble, dashed).
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Here wbi
is the velocity of bubble i and Nb is the number of bubbles in the system. Similar to [6], the results in Fig. 22 show

that the rise velocity of the free array is smaller than the rise velocity of the regular array. Compared to the results by [6], the
difference in rise velocity between the regular and freely evolving array appears to be somewhat larger in magnitude. We
note however that an accurate time-averaged rise velocity of the bubbles can not yet be determined because of the limited
extent of this computation. While the total simulation time is equivalent to the simulation time by [6], the dynamics of the
freely evolving array appear to require more time to develop. This conclusion is supported by Figs. 23 and 24. In Fig. 23, the
average velocity of the bubbles (also referred to as the velocity of the centroid of all the bubbles) is presented, displaying
each component of the velocity vector which is made dimensionless using

ffiffiffiffiffiffi
Dg

p
. Fig. 23 shows that the average horizontal

velocity components of the bubble system, which are approximately one order in magnitude smaller than the vertical com-
ponent, only start to develop from t ¼ 55. In Fig. 24, the vertical and horizontal velocity fluctuations of the bubbles are pre-
sented relative to the instantaneous centroid velocity of the bubbles, respectively denoted k0v and k0h and defined by:
k0vðtÞ ¼
1

Nb

XNb

i¼1

ðwbiðtÞ �wbðtÞÞ2; ð28Þ

k0hðtÞ ¼
1

Nb

XNb

i¼1

ðubi
ðtÞ � ubðtÞÞ2 þ ðvbi

ðtÞ � vbðtÞÞ2: ð29Þ
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Fig. 24. Vertical and horizontal velocity fluctuations of the bubbles w.r.t. the centroid bubble velocity, respectively denoted by k0v (solid) and k0h (dashed).
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Fig. 25. Average relative mass error of the bubbles (free array with eight bubbles).
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Fig. 23. Dimensionless velocity of the centroid of all bubbles, with horizontal components of the velocity vector ub (dashed) and vb (dotted), and vertical
component wb (solid).
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Fig. 24 indicates that the amplitudes of the bubble velocity fluctuations are still growing, suggesting that the instability of the
system continues to grow (i.e. its dynamics have not yet fully developed as suggested previously). Nevertheless, the results
of Fig. 24 compare well with the results by [6], showing a similar magnitude of the horizontal and vertical bubble fluctua-
tions. Finally, the results of the average relative mass errors of the bubbles is presented in Fig. 25. The final number of
3:3� 10�6, i.e. 3:3� 10�4% loss of the initial mass, shows excellent conservation of bubble mass over an extensive simula-
tion time and a large number of timesteps, as the current computation is performed for more than 200,000 timesteps.

7. Conclusion

The multiple marker front-capturing method is introduced as a novel approach for the numerical simulation of colliding
bodies of the same fluid without numerical coalescence in the framework of the Level-Set/Volume-Of-Fluid methodology.
The method is validated by its application to the case of gravity-driven drop impact on a liquid–liquid interface. The results
of the drop impact study imply that the multiple marker method can be used effectively for the simulation of droplets in a
liquid, accurately representing the effect of surface tension on the dynamics of the flow. While the multiple marker approach
successfully prevents numerical coalescence of interfaces through the representation of separate interfaces with different
marker functions, it is acknowledged that situations may occur where insufficient numerical resolution is available to rep-
resent fluid motion in the thin film between the interfaces. This implies that application of the multiple marker front-cap-
turing method for the simulation of liquid–liquid dispersions is appropriate when one of the following conditions is satisfied:

(1) Combination of two fluid phases with a viscosity ratio equal or close to unity.
(2) Low volume fraction of the dispersed phase, resulting in a relatively low collision frequency of drops.

For dense dispersions of fluids with small viscosity ratio ðk	 1Þ, additional (local) grid refinement appears to be indis-
pensable to accurately represent all relevant scales of the flow.

The results presented in section six show that the multiple marker front-capturing method can be used to study disper-
sions with multiple (eight) droplets.

Obviously the computational effort of the simulation increases with the number of droplets, each one being represented
by separate marker functions. Currently, the LS and VOF function of each droplet is defined in the entire three-dimensional
domain. The required memory storage and computational effort which is associated with interface representation and
advection scales with NdNh;Nd being the number of droplets and Nh the number of computational cells. Consequently,
the simulation of dispersions with a substantial amount of droplets, i.e. Oð100Þ or more, is not practical with the present
implementation. The issue of computational expense can be resolved by localization of the marker functions in the vicinity
of the interface. Using the distance function property of the LS function, cells in the vicinity of each droplet can be identified
to store and update the VOF and LS functions only within a layer of a few cells on either side of the droplet interface. As a
result, the memory storage and computational time for representation and advection of the interface can be substantially
reduced and its scaling limited to NdN2=3

h .
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